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Abstract
A major concern in digital electronics used in space is

radiation-induced transient errors.  Radiation hardening
is an effective yet costly solution to this problem.
Commercial off-the-shelf (COTS) components have been
considered as a low-cost alternative to radiation-
hardened parts.  In ARGOS project1, these two
approaches are compared in an actual space experiment.
We assess the effectiveness of Software-Implemented
Hardware Fault Tolerance (SIHFT) techniques in
enhancing the reliability of COTS.

1. Introduction
Radiation, such as alpha particles and cosmic rays, can

cause transient faults in electronic systems.  Such faults
cause errors called Single-Event Upsets (SEUs).  SEUs
are a major cause of concern in a space environment, and
have also been observed at ground level [1].  An example
effect is a bit-flip — an undesired change of state in the
content of a storage element.  The effects in
combinational circuits, e.g., an arithmetic logic unit
(ALU), can lead to incorrect results.

Radiation hardening is a fault avoidance technique
used for electronic components used in space.  However,
these components lag behind today’s commercial
components in terms of performance.  The need for low-
cost, state-of-the-art high performance computing systems
in space has created a strong motivation for investigating
new fault tolerance (FT) techniques.  Using COTS
components, as opposed to radiation-hardened
components, has been suggested for building cheaper and
faster systems.  However, COTS components have limited
FT features. SIHFT techniques provide low-cost solutions
for enhancing the reliability of these systems without
changing the hardware.

2. Experiment Setup
The Stanford ARGOS project [2] is an experiment that

is carried out on the computing test-bed of the NRL-801:
Unconventional Stellar Aspect (USA) experiment on the
Advanced Research and Global Observations Satellite
(ARGOS) that was launched in February 1999.  The
ARGOS satellite [3] has a Sun-synchronous, 834-
kilometer altitude orbit with a mission life of three years.
The objective of the computing test-bed in the USA
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experiment on ARGOS is the comparative evaluation of
approaches to reliable computing in a space environment,
including radiation hardening of processors.  The
experiment utilizes 32-bit MIPS R3000 compatible
processors.  The Hard board uses the Harris RH3000
radiation-hardened chip set, features a self-checking
processor pair configuration and has Error Detection and
Correction (EDAC) hardware for its 2MB SOI (silicon on
insulator) SRAM memory.  The COTS board uses the
3081 microprocessor from IDT and only COTS
components.  It has 2MB of SRAM and has no hardware
error detection mechanism except for internal cache
memory parity.  The operating system (OS) on both
boards is VxWorks.  It is possible to update the software
on the boards based on the results received during the
mission, and test different SIHFT techniques.

This paper presents preliminary results of our
experiment. We continue to collect and analyze error data.

3. Hard Board
The Hard board has hardware EDAC for memory and

a self-checking processor pair.  Moreover, the data and
address buses have parity bits.  Upon a mismatch between
the master and shadow processors, an exception is
generated leading to a system halt and reset.
Uncorrectable memory errors or parity errors also lead to
system halt.

Several errors have been observed in the Hard board.
These errors have occurred during the execution of two
tests: a memory test that checks for a fixed pattern in a
block of memory, and a program that generates a sine
table and compares it against a stored table.  Four errors
have occurred in the first program and three in the second.
There has also been one exception that led to a system
halt.  For all other errors, the programs have detected the
error, reported it and continued their execution.  That
means the master and shadow processors were in
agreement on the errors.  Therefore, the errors were not
upsets in one of the processors.  They were not cases of
double errors that were not correctable by the EDAC
hardware either.  We may not be able to pinpoint the
source of these errors but the evidence suggests that they
occur in a place that is a common source for both
processors.  One such place is the data buffer between
memory and processors.

The error rate on the Hard board is lower than on the
COTS board.  This discrepancy may be due to the
different SRAM components on the two boards and not
the different processors.



4. COTS Board
4.1. Software-Implemented EDAC

There is no hardware EDAC to protect the main
memory of the COTS board.  In the early stages of the
experiment, we observed that SEUs corrupted the
memory, forcing frequent system resets.  We
implemented EDAC in software and used periodic
scrubbing to protect the code segments of OS and
application programs (details of our technique are
described in [5]).  This improved the availability of the
COTS board significantly.  We are able to run the board
continuously for more than a month with software EDAC,
as opposed to a few days without software EDAC.

Hundreds of memory bit-flips have been observed by
running memory tests on the COTS board.  The average
memory error rate calculated based on these tests and the
errors corrected by software EDAC is about 5.5
upsets/MB-day.  It has been observed that a single particle
can affect multiple adjacent memory cells and cause
Multiple-Bit Upsets (MBUs) [1][4].  In our experiment,
MBUs constitute about 3 percent of the memory errors.
Our software EDAC is designed to handle MBUs and it
has successfully corrected all the cases of MBUs.

4.2. Error Detection and Recovery

Transient errors that occur in a processor can be
detected by executing a program multiple times, and
comparing the outputs produced by each execution.
Duplication can be done at task level by the programmer
or by the OS.  It can also be done at instruction level
during program compilation.  We have developed a
technique called Error Detection by Duplicated
Instructions (EDDI) that uses the latter approach.
Computation results from master and shadow instructions
are compared before writing to memory.  Upon mismatch,
the program jumps to an error handler that will cause the
program to restart.  Details of this technique can be found
in [6].

EDDI can only detect some of the control-flow errors.
To enhance the detection coverage for this type of error,
we have developed a technique called Control-Flow
Checking by Software Signatures (CFCSS).  CFCSS is an
assigned signature method where unique signatures are
associated with each block during compilation.  These
signatures are embedded into the program using the
immediate field of instructions that use constant operands.
A run-time signature is generated and compared with the
embedded signatures when instructions are executed.
Details of this technique can be found in [7].

To facilitate error recovery, we break a program into
modules and run each module as a separate task.  A main
module controls the execution of all the other modules.
When one of the error detection mechanisms detects an
error, the erroneous module is aborted and restarted
without corrupting the context of the other modules.

EDDI and CFCSS are pure software techniques for
detecting hardware errors.  These techniques do not
require any changes in hardware or any support from the
OS.  We have applied the combination of EDDI and
CFCSS to two sort algorithms (Insert sort and Quick sort)
and an FFT algorithm.  We do an assertion check after
each execution to see if there was an undetected error.
For sort algorithms, we check that the data is sorted
correctly.  For the FFT algorithm, we calculate a
checksum of the results and compare it against the
expected checksum that is stored in the program.  So far,
the programs implementing EDDI plus CFCSS have
detected a total of 116 errors, there have been no
undetected errors, and more than 95% of the recoveries
have been successful.

5. Conclusions
The results from the Hard board shows that despite all

the hardware FT techniques used in the board, there are
cases of undetected errors.  Even if single points of failure
are eliminated by better design, additional FT techniques,
perhaps in software, may still be required for high
reliability.

The software-implemented error detection and
recovery techniques that we have used in ARGOS have
been effective for the error rate observed in the COTS
board.  Even though hardware EDAC would be preferable
for main memory, software EDAC has provided
acceptable reliability for our experiment.  Our results
show that COTS with SIHFT are viable techniques for
low radiation environments.
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